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Implementation of the solvent effect in 
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the solvent-accessible surface area 
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(Received July 28, 1992) 

A short review is given on the treatment of the solvent effect based 
on the continuum medium theory. A new modification is proposed 
which extends Still's recent breakthrough. Essential points of our 
modification are (1) separation of cavity and intrinsic terms and (2) 
relating the cavity term to the molecular volume. Several technical 
problems that occurred in the algorithm of solvent-accessible 
molecular surface-area cakulatiom and that concerning the discontinuity 
in the surface-area derivatives are discussed. Results of critical 
tests on the extensively revised algorithm are described. The most 
crucial situation arises when the function for calculating surface-area 
must be switched, in the course of geometry optimization, from the 
two-spheres intersection case to three-spheres case. A test using a 
simple three-spheres model indicates that the switching of the function 
will not be hazardous. 

I. INTRODUCTION 

The success of molecular mechanics in dealing with 
energetics, structures and dynamics of molecules in 
the gaseous state' has led to early attempts to extend 
the scheme to solutions: Allinger and coworkers' and 
Meyer3 used the reaction field theory to develop a 
solvent effect term by taking into account the dipole 
and quadrupole contributions. Recently, Still and 
coworkers4 introduced contributions from hydrophobic 
interactions by means of the solvent-accessible surface 
area of the solute and have used a generalized Born 
equation instead of reaction field theory for evaluating 
electrostatic solvent-solute interactions. Still's method 
is, however, designed for aqueous solutions and 
contains several empirical parameters in order to 
accelerate computation.' In view of its potential in 
molecular simulation,6 it seems worthwhile to expand 

Still's methodology to the general solution. The paper, 
the first part of our series, describes the general scheme 
and some technical improvements in the analytical 
calculations of solvent accessible surface area. 

11. MOLECULAR AND SOLVENT- 
ACCESSIBLE SURFACES 

The concept of molecularsurface emerged as a practical 
tool in studying properties of the molecule considered 
as a rigid body, especially in molecular graphics. It is 
defined as the surface which includes the essential part 
of the electronic cloud around a molecule. Such a 
surface is generally constructed by covering a sphere 
over each atom in the molecule, the sphere having the 
van der Waals radius of the and its center 
being located at the atomic nuclear position. Heavy 
overlap among spheres leaves a geometrically complex 
but closed free surface consisting of a collection of 
partial spheres (Fig la). Such a molecular surface 
resembles closely to the space-filling model, thus 
providing an analogy with macroscopic objects, and 
has helped to develop techniques of molecular graphics 
analysis. 

The idea of solvent-accessible surface area originates 
from the scaled particle theory for liquids and 
sol~t ions,~ where it was defined as the surface of a 
spherical cavity obtained by excluding all the solvent 
hard spheres whose centers lie within a certain radius 
measured from the center of a solute molecule (Fig 
1 b). This idea developed into the solvent-accessible 
surface by including the concept of molecular surface. 
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304 V. GOGONEA and E. OSAWA 

Figure 1 Various representations of solvent surfaces. (a) van der 
Waals surface, (b) cavity created by displacing solvent molecules 
from a spherical space in the liquid, (c) solvent-accessible surface, 
(d) solvent-rolled surface, (e) closed boundary made by intersection 
of two circles, the sudden change in tangent direction in the points 
where the two circles intersect each other marks the discontinuity 
in the first derivative. 

At the moment, two definitions of the solvent- 
accessible surface are in use. The first one, introduced 
by Lee and Richards,” pertains to the surface of 
overlapping atomic spheres, each having as a radius 
the sum of the van der Waals radius of the atom and 
radius of a spherical model of the solvent (Fig lc). 
This surface, also called cavity surface,’ is a measure 
of the number of solvent molecules in the first solvation 
layer. 

The second definition, also introduced by Richards,” 
corresponds to the surface drawn by a solvent hard 
sphere rolling over the solute molecule (Fig Id). This 
surface consists of contact and reentrant surface.13 The 
contact surface arises from that part of the van der 
Waals surface of atoms accessible to the solvent, while 
the reentrant surface has negative curvature and comes 
from the inward part of the solvent sphere when it is 
simultaneously in contact with more than one atom 
of the solute molecule. 

Although the second definition gives a smooth 
surface and should be closer to the r e d  molecular 
surface the solvent can access, the first one proved to 
be much easier to compute and as a consequence is 
widely used. The algorithm presented here is designed 
to compute the first type of surface area. 

In order to compute the solvent-accessible surface 

area, a variety of algorithms of numerical, analytical 
or semianalytical type have been devised. Among 
them, the point-by-point scanning method14 is widely 
used due to its ~implicity.’~ Numerical algorithms for 
surface area computation are simple to program, but 
computationally expensive. For example, in the 
point-by-point scanning, a very fine mesh (0.005 A) is 
needed in order to obtain acceptable accuracy. Besides, 
the optimization of a target function converges 
much slower when gradients obtained by numerical 
differentiation are used rather than by the analyticai 
method. 

The analytical computation of the surface area 
consisting of overlapping hard spheres proved a 
difficult task. Wodak and Janin16 proposed an 
approximate analytical method based on a two-body 
distance function and corrective terms for multiple 
overlapping. The first exact solution to the analytical 
computation of the surface area of a fused hard spheres 
system was given by C~nnolly. ’~ Shortly after him, 
Richmond proposed a similar algorithm for the 
computation of both area and its first derivative.17 
Later, Gibson and Scheraga” proposed analytical 
algorithms for computation of both surface area and 
volume of fused hard spheres. Connolly’s algorithm 
is the most elaborate and computes the area obtained 
by rolling a probe sphere on the van der Waals surface. 
Here we used Richmond’s method of analytical 
calculating molecular surface area. 

A. Remark on Still’s approach to solvent-accessible 

Before describing our results, we briefly examine Still’s 
approach of calculating the solvent-accessible surface 
area. He and his coworkers developed Wodak and 
Janin’s approximate algorithm into a parameterized 
method.” Their main aim was to obtain an approximate 
surface area function which best fits the exact surface 
area and at the same time has continuous derivatives. 
The method is restricted to the cornputation of the 
surface area of overlapped hard spheres in water, for 
which parameters had been obtained by the least- 
squares fitting procedure, but it is highly effective in 
terms of computer time. 

However, these authors state that the performance 
of their method is in general unpredictable. We carried 
out extensive tests but present here one example which 
seems to indicate a source of problem. The surface 
areas of all 12 unique conformers of n-hexane (1)” 
obtained by our modification (vide infra) of Richmond’s 
method are compared with those obtained by Still’s 
method in Table 1. 

Although the results from the two algorithms agree 
well for the stable conformers (upper entries), the error 
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Table 1 Solvent accessible surface area (AZ) of twelve unique 
conformers of n-hexane as computed by both exact and approximate 
methods 

Conforme? AAb EA' Difference, %d 

AAA 314.64 313.559 0.3 
AAG 303.16 309.352 - 2.0 
AGA 303.88 309.497 - 1.8 
AGG 286.56 303.101 - 5.4 
GAG 291.21 304.929 - 4.5 
GAG' 294.84 305.413 - 3.4 
GGG 273.81 296.768 - 7.7 
AGG' 284.86 302.110 - 5.1 
AGG' 287.15 302.616 -5.1 
GGG' 267.50 294.165 - 9.0 
GGG' 277.31 298.606 -7.1 
G G G  266.95 293.196 -9.1 

A = anti, G = gauche, G' = -gauche, G = distorted G (90"). G' = distorted G' (- 90"). 

Approximate area computed with Still's method. 
Conlarmers are listed in the order of decreasing stability. See: Ref 17a. 

'Exact area computed with our modified algorithm based on Richmond's method. 
[ (AA - EA)/EA]  x loo. 

1 1  15 1 4  

17 5 

1 

in the approximate method (mostly negative) increases 
for the less stable conformers (lower entries). The more 
strained conformers have high internal crowding, 
hence high degrees of overlapping among van der 
Waals surfaces of atoms. Apparently, errors due to the 
increased overlapping must have accumulated. 

111. DEVELOPMENT OF MODEL 

A. Elaboration of hydrophobic term 
The continumm medium model of solvation, which 
we follow in this work, expresses the solvation free 
energy Gso, as the sum of energy terms which 
correspond to the physical processes taking place when 
a solute molecule passes from gas to solution: 

Gsol = Gcau + GudW + Gpol ( 1 )  
G,,, is the free energy required to create a cavity in 
the solvent to accommodate the solute, and GUdW the 
van der Waals interaction energy (repulsion and 
dispersion) between solute and solvent. The sum of 
these two terms are traditionally termed as the 

hydrophobic interaction term since most of the past 
solvation studies have been directed to the aqueous 
solution. GPO, is the electrostatic interaction energy 
between solute and solvent (also called polarization 
energy), and is usually evaluated by means of the 
reaction field theory.21 

In the solvation model proposed by Still and 
coworkers,4 the combined cavity and van der Waals 
terms were evaluated in terms of the solvent-accessible 
surface area. These two terms are, however opposite 
in sign, and almost cancel each other. For polar solutes 
this sum is only a fraction of solvation energy, but will 
overcome the polarization term for non-polar solutes. 
Contrary to the generally held idea, GudW sometimes 
exceeds the polarization terms for polar solutes. For 
example, in the case of N-methylformamide, GPO, and 
GUdW are 3.23 and 4.47 kcal/mo1,22 respectively. For 
these reasons, we chose to compute the cavity and van 
der Waals terms separately and with at least the same 
accuracy as in the evaluation of solvation free energy 
itself. 

B. Evaluation of cavity free energy C,,, 
The idea that a spherical cavity of suitable size should 
be created into the solvent in order to accommodate 
the solute proved to be useful in explaining the 
solubility of gases in l i q ~ i d s . ~  One way to evaluate 
G,,, is to relate it with the solvent surface tension and 
cavity size: 

Gcau = 4naya2 ( 2 )  
where a is the cavity radius and y m  surface tension of 
solvent However, the use of macroscopic 
surface tension in evaluating G,,, of a cavity of 
microscopic size and the difficulty of determining the 
cavity radius make eqn. (2) less useful for such a model 
to be effective in conformational analysis. 

An alternative in evaluating the free energy for 
creating a cavity is to use scaled particle theory (SPT) 
which defines G,,, as the work required to exclude the 
centers of solvent molecules from a certain region in 
space (cavity, Fig lb):9 

3Y - Gcao = - l n ( l -  y )  + -t 
kT 1 - Y  

+ [ 3y + !( L y ] p  + 5 3  

1 - y  2 1 - y  Psk T 

(3 )  
where y = np, as316 is the reduced number density, 
t = a/as, a and a, are hard sphere diameters of the 
solute and solvent, respectively, ps the number density 
of the solvent (p, = NA/Vm, N ,  = Avogadro's number, 
V, = solvent molar volume), k Boltzmann constant, 7 
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absolute temperature and P pressure. The above 
expression for the evaluation of cavity energy, 
although very successful for hard sphere liquids, 
proved difficult to apply to real sofutions due to the 
impossibility to account for the real shape of the 
solute.24 

Finally, we recall here a suggestion of Oakenfull 
and Fenwick2’ who applied relation 4 for the volume 
changes associated with the creation of a cavity: 

1 
G,,, = - - v,,, + c 

P T  
(4) 

where PT is the isothermal compressibility, V,, cavity 
volume and c an integration constant. 

We combine here the concepts of SPT theory with 
the above suggestion made by Oakenfull and Fenwick 
in evaluating G,,, and consider the cavity free energy 
as being directly related with the cavity volume, where 
the latter was defined as the volume enclosed in solvent 
accessible surface area. We are backed in our choice 
in evaluating G,,, by a recent molecular dynamic study 
made by Postma et a1.26 Postma and coworkers 
performed a molecular dynamic simulation to create 
cavities in water using simple point charge (SPC) water 
molcules and obtained the free energies for five cavities 
of different sizes. Using their numerical results we find 
an excellent correlation between the cavity volume 
(computed from thermal radius of cavity) and the 
cavity free energy G,,, (Fig 2a). This correlation can 
be fit to eqn. (5): 

Gca, = i L u  + CO ( 5 )  

with a correlation coefficient 1.OOO for = 0.0426 and 

We should note that the lack of similar molecular 
dynamics simulations for other solvents, and con- 
sequently the impossibility to obtain cavity free energy 
parameters for other solvents, temporarily limits the 
applicability of this model to water solutions. None- 
theless, extension to other solvent systems should by 
no means be impossible (vide infra). 

(0 = -0.1173. 

C. Evaluation of van der Waals interaction energy GodW 
A common way to evaluate solute-solvent van der 
Waals interaction energy GUdW is to use the Lennard- 
Jones potential” which contains both the repulsion 
and attraction between solute and the surrounding 
solvent. A good starting point in evaluating GvdW seems 
to be the expression of van der Waals interaction 
energy for a solution of hard spheres:” 

(6) 

100 150 

v [A3] 
a 

-304 
100 200 300 

s [A2] 
b 

10 

Figure 2 (a) Correlation of G,, obtained from MD simulation 
with cavity volume; the dots on the correlation line mark the five 
cavities simulated by Postma et a!., (b) correlation of G,,, with 
solvent-accessible surface area; the dots correspond to a series of 
seventeen linear and branched alkanes (from methane to 2,2,5-Me3- 
hexane) for which Gvdu was evaluated from hydration free energies. 

where uo = (u + 0,)/2, is solute-solvent distance at 
uLJ = 0, g(r) is the radial distribution function, r is the 
distance between the two interacting particles and uLJ 
a potential function of the Lennard-Jones type 
containing r as the only variable. The integration is 
performed on the whole volume around the hard 
sphere solute of diameter 0. 

Equation 6 could be transformed from a volume 
integral into a surface integral by means of Gauss 
t h e ~ r e m . ~ * , ~ ~  In this case we obtain: 

x 4rPMrp ,6 ,40 ) r ;  sin 40 dr, dB dv (7) 

where N is the number of atoms in the solute molecule 
and oi equals ri + (uJ2) where ri is van der Waals 
radius of atom i. The integration is performed for all 
points in the polar coodinates rp, 0, and 4p which lie 
on exposed surface area of each atom of radius rl. The 
disadvantage of this approach in evaluating GvdW is 
that the surface integral has to be calculated by 
numerical integration which is very costly in computer 
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SOLVENT EFFECT IN MOLECULAR MECHANICS 307 

time when the optimization of solute geometry is 
required. 

An alternative to eqn. (7) for evaluating G,dW would 
be to treat every atom as a hard sphere solute and to 
evaluate its van der Waals interaction energy with the 
surrounding by means of eqn. (6). Finally, GvdW for 
the polyatomic solute is computed from that part of 
interaction energies which correspond to the exposed 
surface area (solvent accessible surface area) of every 
atom: 

where S i  is the exposed surface area of atom i with 
van der Waals radius r,. Although this approach is less 
accurate than the eqn. (7), it has the advantage that 
the volume integral can be evaluated for every type 
of atoms only once and used as a parameter for any 
compound. Besides, this approach makes it possible 
to extend the solvent effect model to general solution. 

In the evaluation of the integral of eqn. (8) the radial 
distribution function g(r) could be taken as unity 
(homogenous approximation) or a simple functional 
form which meets boundary conditions (contact value, 
neighbour peaks) can be used in order to include 
partial information concerning solvent distribution 
around solute. 

In a crude approximation, the whole integral can 
be substituted with a parameter determined empirically 
(vide infra). This option reduces the eqn. (8) to: 

N 

GudW = 1 visi + 00 (9) 
i =  1 

where ui and uo are empirically determined parameters. 
Floris and coworkers3’ computed GudW for hydro- 

carbons interacting with water using a model based 
on eqn. (7). Although, they did not compute the cavity 
term in order to compare their sum with the experimental 
solvation energies, we wish to remark that they found 
a very good correlation between the computed G,dW 

and van der Waals surface area of hydrated hydro- 
carbons and that their finding supports the idea of 
evaluating G,dW by means of eqn. (9). 

We confirmed this linear relation between GUdw and 
surface area by evaluating GudW for hydrated hydro- 
carbons by subtracting cavity energy from hydration 
free energy:31 

(10) 

The cavity free energies G,,, were evaluated by means 
of eqn. (5 )  while the polarization term was set to zero. 
Figure 2b shows indeed a good correlation given by 
eqn. (9) between GvdW computed with eqn. (10) and 
solvent-accessible surface area with a correlation 

GudW = Gsol - Gcau 

coefficient of 0.996. Some of the earlier approaches 
have used a surface tension parameter for the whole 
surface area,4 and others have used different surface 
tension parameters for every type of atoms.’ Taking 
into account that different type of atoms have different 
Lennard-Jones potential parameters we attempted to 
determine parameters in eqn. (9) separately for C and 
H atoms. Results are satisfactory: uc = -0.1179, 
uH = -0.0671, uo = 6.6463 with the correlation 
coefficient of 0.9982. Parameters for heteroatoms could 
be determined in a similar way after adding the 
polarization term. 

Using eqn. (9) in the evaluation of van der Waals 
interaction free energy first of all requires a high 
accuracy in the computation of atomic surface area, 
which will be discussed in some detail later in this 
paper. 

D. Evaluation of polarization free energy GPO, 
The polarization free energy is commonly evaluated 
by means of reaction field theory” or generalized Born 
(GB) method.32 In generalized Born approach, the 
polarization free energy of a solute embedded in a 
spherical cavity surrounded by a solvent of E dielectric 
constant is given as: 

where qi and qj  are partial charges of solute atoms i 
and j and d ,  the distance between these atoms. For 
non-spherical molecules the cavity radius a, of atom 
i is usually taken as the sum of van der Waals radius 
r,  and solvent radius. The use of GB approach would 
be straightforward provided that the cavity radii (a) 
could be determined in a simple way. In a recent 
implementation4 of GB method, the cavity radii were 
evaluated in a rather sophisticated way (with a finite 
difference method) which allows making the radius a, 
a function of molecular shape, but considerably 
increases the computing time.’ 

There is still another disadvantage of GB method: 
it does not take into account the polarizability of the 
solute. In order to cope with this problem, we choose 
to evaluate the polarization free energy Gpol by means 
of reaction field theory. Applying Onsager’s idea that 
the solute molecule will be polarized by its own 
reaction field created in the surrounding dielectric, the 
polarization energy due to solute dipole is: 

K P2 Gdip = - - - 
1 - 1K a3 

where p is the solute dipole moment, K = ( E  - 1)/ 
(2e + l), 1 = 2a/a3, a being the molecular polarizability 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
0
5
 
2
9
 
J
a
n
u
a
r
y
 
2
0
1
1



308 V. GOGONEA and E. OSAWA 

of the solute. This quantity is usually taken as a 
function of refractive index nd, namely a = 2(nj - 1)/ 
(nj + 2). 

Abraham and Bret~chneider~~ have proposed to use 
the quadrupole term along with dipole term in order 
to account for the polarization energy of polar solute 
molecules with symmetrical charge distribution (with 
zero dipole moment): 

Gqdp = - 2 h 
5-K 

9 i + i  

h = 2 2 [4Q: + 3(Qij + Qji)2 - 4QiiQjjK14) 
2a5 i , j = x , y , r  

where Qii and Qij are axial and perpendicular 
components of quadrupole moment, respectively. 
Abraham and Bretschneider also took into account 
of dipole-dipole and dipole-quadrupole interactions 
between solvent and solute in order to incorporate 
Onsager's theory in highly polar media.33 Thus, the 
expression for dipole-dipole and dipole-quadrupole 
interaction free energy G D Q  obtained is: 

G,, = - hfI1 - exp(-bf/16R1)] (15) 

where, 
1 

f =  [ ( E  - 2 K E  + 1)/&]7 (14) 
b = - [ + l [ p 2 + - $ ]  3 2 V R T  (17) 

a3 

and R is the gas constant and 2 is the summation of 
eqn. (14) which is sometimes called the solute 
quadrupole moment. 

Finally, the polarization free energy we used in the 
development of this solvent effect model is given as: 

IV. SOME TECHNICAL PROBLEMS AND 
THEIR SOLUTIONS 

A. Incorporation of solvent effect term into molecular 

If the solvent effect is to be incorporated into molecular 
mechanics force field through a linear approximation, 
the total energy E of a solute molecule in solution will 
be given as the sum of the steric energy due to the gas 
state E ,  and the steric energy due to solvent effect &,,: 

mechanics geometry optimization 

E = E ,  + Esol (19) 
Consequently, the gradient ( V )  and hessian (A) matrices 
of the total steric energy with respect to the freedom 
of atomic movements will have linear expressions too: 

V E  = V E ,  + VE,,, (20) 

A E  = AEg + AE,,, (21) 
The steric energy due to the solvent force field could 

be expressed as: 

= Ecau + EudW + Epol (22) 
where steric energy terms E,,, EudW and Epol have 
similar expression as those given in eqns (5), (9) and 
(18), but they refer to individual molecules, while G,,,, 
GUdw and GPO, are statistical averaged quantities. Thus, 
the evaluation of the effect of the solvent requires the 
obtaining of the first and the second order derivatives 
of these energy terms. 

We ignored here the effect of the solvent on the 
partition function of the solute and assumed that only 
the conformers population changes as passing from 
gas to solution. Consequently, the solvation free energy 
is evaluated by taking into account the low energy 
conformers obtained by mapping steric energy surface:34: 

where n,/ is the number of significantly populating 
conformers, pi the population of conformer i (ZZ pi > 
0.99) and Ef,, the solvent effect steric energy. Note that 
p i  is not available from the beginning and is determined 
by iteration using the gas state values as a starting 
value. 

B. Continuity in the surface 
Van der Waals molecular surface, when described as 
a function of Cartesian coordinates, has discontinuities 
in the first partial derivatives on the circles of 
inter~ect ion.~~ Figure le illustrates the case in two 
dimensions: the function describing a closed boundary 
has discontinuities in the first derivative at the 
intersection of the two circles. 

However, unlike the molecular surface, the surface 
area of a body composed of intersecting two hard 
spheres has continuous derivatives. In this case, the 
surface area S is given as: 

2 

S = 271 1 ri(ri + t i )  (24) 
i =  1 

ti = (d2 + r: - rj2)/2d i ,  j = 1,2; i # j  (25) 

For symbols, see Fig 3, d is the distance between the 
centres of spheres i and j .  Setting the radii of both 
atoms to unity (rl = r2 = 1) does not reduce the 
generality of the above relationships, but simplifies the 
expressions for the first and second order derivatives 
with respect to the Cartesian coordinates of spheres 
centres. It is also convenient here to use the 3 by N 
matrix notation of Cartesian coordinates for N atomic 
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SOLVENT EFFECT IN MOLECULAR MECHANICS 309 

Figure 3 The definition of quantities which appear in eqns (24) 
and (25). These quantities are used to compute the surface area of 
a body made by intersecting two spheres. 

centres: 

X =  

x1 Y l  21 

x2 Y 2  z2 

... 

Xi Yi zi 
... 

‘N Y N  zN 

where xi, yi and zi are the Cartesian coordinates of 
atom i .  Then, the derivatives of surface area can be 
written down as the following matrix notation: 

where q = 1 if both the first and second differentiations 
are done with respect to the same coordinates, or q = 0 
otherwise. Equations (26) and (27) show a discontinuity 
in the first and second order derivatives only for d = 0 
(i.e. when the centres of two spheres coincide). 

C. Gauss-Bonnet theorem 
The calculations of solvent-accessible surface area Si 
of sphere i in a system formed by overlapping spheres 
can be accomplished by means of the Gauss-Bonnet 
theorem: 

where u is the number of regular curves C, of length 
sj, (arc of intersection circle, Fig 4) which make a closed 
boundary around S ,  k2 is the geodesic curvature of 
CE,, Q,,+, is the external angle between the vectors 
tangent to two connected arcs CL and C A + ~  (Fig 4). 
The solvent-accessible surface area of a certain atom 
could be made of one or more separate pieces, each 
of them being enclosed in an independent closed 
boundary. Two less the number of these non-adjacent 

parts gives the Euler-Poincare chracteristic x. The 
derivation of eqn. (28) as well as the details of the 
computation of all quantities appearing in this 
equation are described by Richmond.” 

D. Richmond’s algorithm 
Computation of surface areas is straightforward as 
long as only two atomic spheres are involved in an 
intersection (two-spheres case; this is done by eqns 
(24) and (25)). Difficulty arises when more than two 
spheres overlap (when eqn. (28) applies). In a 
three-spheres case (i ,  j ,  k), two circles of intersection, 
one between i and j (hereafter designed as i / j)  and the 
other between i and k ( i /k) ,  cross each other. 

Computation of the solvent-accessible surface area 
of the higher-spheres case proceeds through the 
following steps: 

(1) All of the atomic spheres which overlap with the 
sphere of atom i are found and sorted in the 
decreasing order of the radius of intersection circle 
with i. Assume that these spheres come from atoms 
j ,  k ,  1 , .  . . . 

(2) In order to simplify the computation, the molecule 
is rototranslated so that atom i is placed at the 
origin of the coordinate system used, and atomj is 
placed on the positive side of z axis. 
[a] From among atoms k, I , .  . . , all those atomic 

spheres m, n, 0,. . . which overlap both i and j 
are found. The plane of intersection circle 
between atoms i and m (i/m) will cut out a free 
arc on the intersection circle i / j  (Fig 5a, the 
arc which borders the shaded area is inside 
atom m and the other arc is outside of atom m). 

[b] Every intersection plane between atom i and 
other atom (m,n,o, ... except atom j) will 
divide the intersection circle between i and j 
into two arcs. After considering all the 
intersection planes between atom i and 
atoms my n, 0,. . . the arcs which belong to i/j 
intersection plane and are not overlapped by 
other atoms are called free arcs (C1, Fig 5b, in 

Figure 4 A piece of solvent-accessible surface Si enclosed in a 
boundary of C, regular curves. Q2,,A+, is the external angle between 
the tangents of connected curves. The external angle Q1,>.+ I along 
with C A  curves are used in computing Si by means of eqn. (28). 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
0
5
 
2
9
 
J
a
n
u
a
r
y
 
2
0
1
1



3 10 - i/m 

V. GOGONEA and E. OSAWA 

a b 

Figure 5 Definition of free arcs CL. (a) the arcs defined by cutting 
the i/j intersection circle with the i /m cutting plane, (b)  the free arc 
Ci which remains after taking into account all cutting planes on i/j 
intersection circle. 

this case there is only one free arc). If there 
are more than one free arc, they belong to 
different closed boundries (vide infra). 

[c] The external angle Q,,, is calculated at the 
two end-points of Cn (Fig 4). 

The Euler-Poincare characteristic x is obtained by 
a topological procedure. Every closed boundary 
makes a polygon of free arcs. The procedure checks 
the neighbourhood of every polygon and gives a 
connectivity error message if open boundaries are 
found. 
The total exposed area on atomic sphere i is 
obtained by summing up patches offree surfaces. 

E. Cautionary note on numerical consequences 
Care must be taken on the numerical aspects of the 
surface area computation by Richmond's algorithm. 
Errors arising from truncation in the computation of 
arc cosine f~nction,~'  used in the calculation of arc 
length, are found sometime significant. These errors 
appear most often when spheres overlap in such a way 
that the cutting lines made by, for example, planes i /m 
and i /n on the i/j plane are close and parallel (Fig 6). 

A real molecule with a real geometry was selected 
to illustrate how our modified algorithm manages to 
avoid the above shortcoming. Table 2 shows contrasting 
areas computed by using Richmond algorithm and by 
our modification for three atoms in n-heptane in 
all-anti conformation (2), Richmond algorithm fails in 
area computation of three atoms, C4, H8 and H13. 
The failure also appears at atoms C16, H18 and H20 
which are symmetrically placed with respect to the 
middle of the carbon chain. 

Let's consider the overlap between atomic spheres 
C4 and H8. Figure 7a shows the 4/8 intersection circle 
as being cut by other nine intersecting planes. The 
cutting lines made by 4/16 and 4/20 planes are parallel 
and close. The arcs cut out by these lines have almost 
identical end-points (lo-' radian apart).38 

Our modified algorithm avoids the connectivity 
error by using the following set of conditions: 

L:,j < Lfij (29) 
where LZj is the length of the arc made by atom k on 
the i/j intersection circle (in this case, i = 4, j ,  k, 1 
belongs to the set of indices (8,16,20} withj # k # I). 
The algorithm swaps the end-point values when the 
arcs are found to be in the wrong sequence. For 
example, the end-point values are swapped between 
atoms 16 and 20 as shown in Fig 7b.39 

In order to detect and treat these special cases, new 
quantities are needed such as the three-plane intersection 

Figure 6 The case where the numerical errors appear in the 
calculation of solvent-accessible surface area with Richmond's 
algorithm. When the intersection circle planes i/m and i/n cut the 
intersection circle i/j, and the resultant cutting lines are close and 
parallel, numerical difficulty arises. 

Table 2 Computed atomic surface area Si (A2) for several atoms 
of n-heptane in the global minimum conformation 2 

Difference 
% 

Si Si 
Atom EP" (Richmond) (this work) 

c 4  - 5.312 1.616 228.7 
H8 1 17.580 14.98 1 17.3 
H13 1 21.277b 14.981b 42.0 
S' 363.393 3 3 8.209 7.4 

a Euler-Poincare characteristic. 

the present modification. 
'Solvent accessible surface area of the whole molecule (in A'). 

HI3  should have the same S, value as H8 due to symmetry. This premise is realized in 

1 1  1 5  

3 2 2  

12  13 20 23 

2 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
0
5
 
2
9
 
J
a
n
u
a
r
y
 
2
0
1
1



SOLVENT EFFECT IN MOLECULAR MECHANICS 311 

2 l 2  2 

7 7 
20 

19 
18  

19 

a b 

Figure 7 Intersection circle made by overlapping atoms C4 and 
H8 in 2. Lines numbered k is the cutting line of the 4/k intersection 
circle plane with plane 4/8. (a) Richmond's algorithm, (a) modified 
algorithm. 

a b 

Figure 8 (a) Three planes intersection point, (b) the middle of the 
segment which connects the points made by three spheres 
intersection. These quantities are computed in order to check for 
cases where numerical difficulties appear and for further developments 
(volume computation). 

points (Fig 8a) and the middle of the segment which 
connects the two points made by three-spheres 
intersection (Fig 8b). 

New computer codes are added in order to: a) 
facilitate computation of the middle of the segment 
which connects the two points made by three-spheres 
intersection, b) avoid the potentially troublesome 
intersection cases as those in Fig 6, and c) avoid 
completely buried atoms, intersection planes and 
cutting planes which are buried by other planes. 

Computationally expensive calculations of three- 
plane intersection points greatly affect the computer 
time, specially in large molecules. However, these new 
enhancements are useful also in analytical computation 
of the cavity volume and the first and second order 
derivatives of both surface area and volume. Thus, the 
middle of the segment and the three-plane intersection 
points (Fig 8) are also utilized in setting the integral 
limits for volume calculation. 

Having proceeded to the point where solvent- 
accessible surface area can be accurately calculated by 
using Richmond's algorithm, we proceeded to deriving 
the first and second order derivatives of surface area. 

V. ANALYTICAL FIRST AND SECOND 
ORDER DERIVATIVES OF MOLECULAR 
SURFACE AREA 

The pioneeering work in obtaining the analytical first 
derivative for the surface area of overlapping spheres 
with unequal radii belongs to Richmond.I7 Our 
interest in extending this work to the analytical 
computation of volume and its derivatives imposed us 
the task of modifying the Richmond's original 
algorithm. Consequently, even the formulae that we 
use for the first derivatives of surface area somewhat 
differ from those proposed by Richmond. The main 
difference lies in the calculation of free arcs which 
contribute to the evaluation of the last term in eqn. (28). 

In a hypothetical example, Fig 9 shows the free arc 
(the border of unshaded area) made by two cutting 
planes ilk and ill on the intersection circle i/j. Using 
the quantities defined in Fig 9, we can write down the 
expression for the free arc length s;, and its first 
derivatives as: 

s;, = coli,j (30) 

(31) 

(32) 

0 = (wf - wf)  - (m: -k wk) 

aa a(@; - 0:) a(wk + WJ 

ax ax ax 
- - - _  

where ri,j is the radius of i/j intersection circle. The 
angles cot and cop are related with the position of the 
centres of spheres k and 1. wk and w1 correspond to 
the end-points of the arcs cut out by intersection planes 
ilk and i l l  on i lj  intersection circle. The Richmond's 
method evaluates the free arc length using an 
expression similar to eqn. (31), but in calculating the 
derivatives only the second term of eqn. (32) is taken 
into account. Indeed, this last term has the largest 
contribution to the free arc derivative, but the first 

, l i / k  yI 

Figure 9 Model for computation of free arc length. l i / k  belongs 
to ilj intersection plane, passes through the centre of ilj intersection 
circle and is perpendicular on the line made by i / k  cutting plane 
on i/j intersection circle. Li,4 is defined in a similar way. 
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term, although very small in many cases, increases its 
contribution to the total differential4' of surface area 
(VS~X, where VS is the first derivative matrix of S and 
6x is the increments in coordinates) in very complex 
systems of hard spheres. 

In order to demonstrate this point, the total 
differential of the surface area was calculated using 
the first derivatives for a set of compounds involving 
a variety of structural features. Results are summarized 
in Tables 3 and 4. Note that, as the increment in 
coordinates (6x) decreases, the total differential should 
approach the increment in surface area (6S) ,  and 
GS - VSGx should vanish as Sx goes towards zero. 
Some of the compounds used for testing were 

generated using MACROMODEL atom types,4' 
while the rest of them include all atoms explicitly. The 
last column of Table 3 lists the contribution (in %) of 
the derivatives of wo angle to the total differential. 

When this contribution doesn't vanish, the total 
differential of surface area computed by Richmond's 
original program (lower line in each entry) does not 
converge to 6s as the step of integration decreases. 
When the computations were repeated after the 
derivatives due to coo angle were removed in our 
program, it gave identical results for all compounds 
with Richmond's. Table 3 reveals that our modifications 
are valid, the total differential area always approaching 
to 6s whenever 6x is decreased. 

Table 3 Comparison of the first order derivative of surface area (total differential) as computed by our modification (upper line) and by 
the original Richmond algorithm" (lower line) 

SX' 

Structure N A ~  lo-* 10-3 10-5 10-6 hod 

Adamantane 
~ 

26 

Adamantane' 

Bicyclo[2,2,1] heptane 

Ribose 

Oxadecalin' 

Arachidonic Acid' 

Glucopyranose 

Cholestanol' 

Peniciline 

Porph yrin 

Ala, Helix' 

Ala, Extended' 

Ala, Reverse Turn' 

10 

19 

20 

20 

23 

24 

29 

30 

38 

41 

41 

53 

7.50 
7.50 

- 9.02 
4.18 

-4.35 
-4.35 

12.12 
10.56 

14.81 
83.06 

- 5.41 
-4.78 

7.88 
2.29 

24.96 
- 0.98 

9.83 
8.89 

10.28 
10.60 

-261.1 
-256.1 

44.59 
7.29 

- 26.49 
- 14.71 

0.75 
0.75 

-0.83 
12.64 

-0.41 
-0.41 

1.19 
-0.22 

1.73 
62.23 

-0.51 
0.08 

0.79 
-4.63 

2.5 
- 23.10 

0.74 
-0.12 

1.06 
1.35 

- 34.49 
- 39.83 

4.96 
- 28.40 

- 0.07 
10.20 

0.08 
0.08 

- 0.08 
13.46 

0.04 
0.04 

0.12 
- 1.30 

0.17 
60.13 

- 0.05 
0.55 

0.08 
- 5.38 

0.25 
-25.81 

0.07 
-0.79 

0.1 1 
0.40 

- 2.74 
-6.15 

0.49 
- 34.20 

0.00 
10.31 

0.01 
0.01 

-0.01 
13.56 

0.00 
0.00 

0.0 1 
- 1.41 

0.02 
59.83 

-0.01 
0.60 

0.01 
- 5.45 

0.03 
-26.25 

0.01 
- 0.86 

0.01 
0.3 

-0.19 
- 1.50 

0.04 
- 30.60 

0.00 
9.53 

0.00 
0.00 

0.00 
13.57 

0.00 
0.00 

0.00 
- 1.45 

0.00 
73.69 

0.00 
0.66 

0.00 
- 5.7 

0.00 
- 25.36 

0.00 
-0.75 

0.00 
0.29 

- 0.02 
- 2.70 

0.01 
-46.63 

0.00 
10.05 

0.0 

12.5 

0.0 

- 1.4 

36.6 

0.6 

- 5.4 

- 25.5 

-0.8 

0.3 

-4.3 

- 33.1 

9.3 

' ( 8 s  - bS*)ibS* in %. 6s = S - So is the diRerence in surface area between two consecutive iterations, 6s' = VS(x - x,) is the total differential of surface area, VS is the first order 
derivatives matrix of surface area. S and S ,  are surface areas computed lor x and xu. where I IS the matnx of atomic coordinates. 

Number of atoms (see also note'). van der Waals radii arc taken from Gavezzolti. A.: J .  Am Chem. SOC. 1983. 105, 5220 5225, (except for that of sulfur which is taken from Ooi, T. er 
01. Pro? Nnrl. Arad. SCL USA 1987, 84, 3087-3090. 
' Integration increment in A. cootdinatcs are increased by Sx for half of the atoms and decreased by 6r for the rest. 
*bw' = Vwo(r - so), contribution of wo in computing the total differential ofsurlace area. Unil Is in %. 80' is malnx of the first order derivatives of 0'. 
'These compounds are generated using MACROMODEL atom types, see Mohamadi, F.: Richards, N.G.J.; Guida. W.C: Liskamp, R.; Lipton, M.; Cauheld, C.; Chang, G.; Hendrickson, 
T.. Still, W.C.. J. Compur. Chem. 1990, I I , 4 4 & 4 6 7 .  
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Table 4 Comparison of the second order derivative of surface area 
(quadratic approximation) as computed by full matrix approximation 
(upper line) and by block diagonal approximation (lower line) 

~~ ~ 

hXb 

Structure N A ~  10-1 10-2  10-3 10-4 

Adamantane 

Adamantanee 

Bicyclo[2,2,1] heptane 

Ribose 

Oxadecalin' 

Arachidonic Acid' 

Glucopyranose 

Cholestanol' 

Peniciline 

Porphyrin 

Ala, Helix' 

Ala, Extended' 

Ala, Reverse Turn" 

26 

10 

19 

20 

20 

23 

24 

29 

30 

38 

41 

41 

53 

- 33.7' 
-65.7' 

- 22.5 
135.0 

7.5 
-6.5 

- 13.7 
- 7.6 

-21.5 
5.3 

0.7 
- 32.5 

- 30.5 
-82.7 

8.9 
11.4 

- 12.9 
- 12.6 

- 7.2 
2.1 

- 10.5 
20.9 

- 325.6 
227.1 

8.8 
- 69.4 

0.0 
- 3.9 

0.0 
- 1.8 

0.0 
-0.9 

0.2 
1.3 

- 2.2 
3.1 

0.0 
- 1.8 

0.0 
- 6.7 

-0.1 
-0.5 

2.4 
2.4 

-0.2 
1.4 

-0.1 
64.2 

12.0 
- 340.2 

-26.3 
- 36.8 

0.0 0.0 
-0.4 0.0 

0.0 0.0 
-0.2 0.0 

0.0 0.0 
-0.1 0.0 

0.0 0.0 
0.1 0.0 

0.0 0.0 
0.6 -0.3 

0.0 0.0 
-0.2 0.0 

0.0 0.0 
-0.7 -0.1 

0.0 0.0 
0.0 0.0 

0.0 0.0 
0.0 0.0 

0.0 0.0 
0.2 0.0 

0.0 0.0 
-8.6 -0.7 

0.0 -0.2 
8.4 0.5 

-0.1 0.0 
-0.9 -0.1 

*Number of atoms. 
Integration increment in A, all coordinates for half of atoms were increased by 6x and 

decreased by 6x for the remaining atoms. 
' I n  full matrix approximation, (6s - 6S")/dS** in % 6.5 = S - So is the difference in 
surface area between two consecutive iterations, 6.9" = VS(x - x,) i O.SAS,,(x - x ) ~ ,  
VS and VSFm are first and second order derivatives matrices of surface area (FM = full 
matrix). Sand So are surface areas computed in x and xg, where x is the atomic coordinates 
matrix. 

In  block diagonal matrix approximation, (6s - 6S**)/6Sa* in YO. 6s" = VS(r - x,) + 
0 SAS,,lx - x0)', VS and AS., are first and second order derivatives matrices of surface 
area (BD = block diagonal matrix). 
'Compounds generated with MACROMODEL atom types. 

A. Test with a simple method of three-spheres case 
A prerequisite of using analytical derivatives in 
Newton-Raphson optimizations is that they have to 
be continuous functions in the Cartesian coordinates. 
This usually happens with the potential functions of 
the molecular mechanics force field, but the analytical 
expression of surface area function (eqn. (28)), changes 
with the geometry of molecule. The 'transition' point, 
where the function of surface area changes, e.g. from 
a two-spheres function to a three-spheres function, 
could be discontinuous for the analytical derivatives. 

The behaviour of the derivatives around these points 

is studied using a simple arrangement of three spheres 
intersecting each other, where the position of transition 
points could be anticipated. One such transition point 
appears when the surface area function switches from 
a two-spheres case function (intersection circles do not 
intersect each other) to a three-spheres case function 
(Fig 1Oa-c). Let's first consider the model depicted in 
Fig 10a. This system is essentially of the two-spheres 
intersection type and its surface area can be readily 
computed using eqns (24) and (25). As sphere A is 
moved to the right along the x coordinate, the function 
which describes the surface area will change when the 
x coordinate of sphere A reached a transition point 
where all three-spheres intersect simultaneously (Fig 
lob). At this point the surface area function switches 
from two-spheres case function to three-spheres one. 

Figure 1Oc shows a similar situation, although in 
this case, sphere C is rotated, starting from Fig 10a, 
around sphere A. Two transition points could be 
anticipated in this case. The first one occurs at 
4 = 2n/3 and the second one occurs for 4 = 0, where 
4 is the angle defined as shown in Fig 1Oc. 

The behaviour of derivatives around these transition 
points can be monitored by the error in the surface 
area evaluation between two consecutive iterations. 
For this purpose, we define here a target function 
(6s - 6S**)/6S** where 6s is the increment in solute 
surface area at two consecutive iterations. 6S** can 
also be evaluated analytically by using the quadratic 
approximation of a Taylor series, 6S** = VSGx + 
0.5AS6x2. If the surface area function is differentiable 
around the point where computations are performed, 
then the quadratic approximation (GS**) is a good 
approximation of the change in surface area. Evidently, 
the lack of the differentiability in this point could give 
large differences between the quadratic approximations 
(6S**) and the difference between the surface area (6s) 
at two consecutive iterations. 

a b c 

Figure 10 Arrangements of model spheres for checking the 
behaviour of the derivatives at transition points. (a) spheres 
arrangement for which surface area is computed with a two-spheres 
intersection case function, (b) transition point obtained by moving 
sphere A along x axis, (c) transition point obtained by moving sphere 
C around sphere A. 
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0 1  0 3  0 5  0 7  09 066 068 070  072 074 

XA 1A1 XI IA1 

a b 

- ,  , , . ,  
0 678 0 682 0 686 0.6796 0 6800 06801 

XI IAI  X A  IA I  

C d 

Figure 11 Computational tests for the arrangement of spheres 
shown in Fig lob. 6s is the difference in surface area between two 
consecutive iterations, 6S** is the quadratic approximation of 
surface area, x r  is the value of x,, at transition point, here the surface 
area is computed with a three-spheres intersection case function 
and the quadratic approximation 6S** is computed with the 
derivatives based on two-spheres intersection case function, X T +  

is the value of x A  which follows x p  The interval scanned by x A  is 
gradually lowered in order to see if the discontinuity in derivatives 
is wide or sharp. (a) 0.1 < x,, < 0.9, (b) 0.66 < x A  < 0.74, (c) 
0.678 c x,, < 0.686, (d) 0.6796 < x,, < 0.6804. 

6 lradl 

a 

6 lradl 

b 

Figure 12 Computational tests for the arrangement of spheres 
shown in Fig lOc, SS and SS** have the same meaning as in Fig 
11. (a) 4r is the value of 4 at transition when the surface area is 
computed with a three-spheres intersection case function and the 
quadratic approximation SS** based on two-spheres interaction 
case function. &+ is the value which 4 takes after &, (b) in & 
and &+ both derivatives and surface area are computed with the 
three-spheres case function but the derivatives have a discontinuity 
when spheres C and B coincide (at C#J = &+l )  due to asymptotic 
values of some quantities in eqn. (28). This leads to the disagreement 
between 6s and quadratic approximation in &+ 1. 

Figure 1 l a 4  shows computational results performed 
for the case presented in Fig lob. The agreement 
between 6s and 6S** is generally good. The darkened 
area corresponds to those cases where the computation 
of surface area is carried out using the eqns (24) and 
(25) (two-spheres case). In these cases, the only variable 
is the x-coordinate of the centre of sphere A (x,,). 
Similarly, the unshaded area corresponds to the case 
where eqn. (28) is used to compute the surface area 
(three-spheres case). The interval scanned by x,, was 
gradually decreased in going from Fig 10a to 10b in 
order to see if the discontinuity in derivatives is sharp 

or wide. A sharp discontinuity should diturb the 
optimization less than a wide one, if we could skip it 
by taking appropriate interval. 

In Fig 11 we mark the value of x,, at transition with 
x T .  In this point the surface area is computed 
with a three-spheres case function and the quadratic 
approximation is based on derivatives calculated with 
a two-spheres case function at the previous iteration. 
When x,, = x T ,  both derivatives are highly unstable 
(small changes in x coordinate will cause large changes 
in target function) due to some quantities in Gauss- 
Bonnet function which take asymptotic values (radii 
of intersection circles), and consequently the agreement 
at the next iteration ( x T +  

Figure 12a-b show similar results obtained when 
sphere C is moved around sphere A (Fig 1Oc). In this 
case angle 4 is used as the variable and two transition 
points are obtained. The first one is reached when q5 
is about 2n/3 (Fig 12a). As in the previous example, 
the agreement between the increment in surface area 
(6s) and quadratic approximation (6S**) worsens at 
the next step(&-+ ,)due to the same asymptoticchange 
in some of the quantities appearing in eqn. (28). The 
second transition point is reached when 4 is close to 
zero (C and B spheres coincide). Both before and after 
this point the same function (three-spheres case 
function, eqn. (28)) is used to calculate the derivatives 
but at 4 = 0 the derivatives are again unstable. 

The increased discontinuities in the analytical 
derivatives of molecular surface area along with their 
complexity are among the major disadvantages of 
analytical gradients. The difficulty in locating the 
transition points on the steric energy surface for real 
molecules prevented us from providing adequate 
algorithm to deal with these situations. However, from 
above results, we deduce that these discontinuities 
should be of less practical importance for the 
optimization because the algorithm could manage to 
jump over or get out of them. In order to determine 
the effect of the discontinuities in the derivatives upon 
optimization we performed the minimization of surface 
area of the spheres arrangement shown in Fig 10b by 
allowing sphere A to move freely. The optimization 
proceeded smoothly and at the end we found sphere 
A positioned at the origin, identical with the arrangement 
having the lowest surface area, Fig 10a. Our conclusion 
is that the optimization algorithm manages to jump 
over the transition point due to the sharpness of the 
discontinuity. We also performed optimizations on 
hydrocarbons in water without any difficulty. It may 
also be noted that the optimization algorithms used 
in molecular mechanics set up an upper limit for the 
increment in atomic coordinates to about 0.2A and 
thus diminish the effect of the discontinuities in the 
derivatives of surface area on optimization. 

worsens. 
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VI. CONCLUSIONS 

Analytical derivatives of surface area certainly will be 
of interest in such diverse fields of computational 
chemistry as drug design, molecular graphics, and 
protein docking algorithms. One way of using them 
in molecular mechanics optimization would be to add 
them at the end of the optimization before re- 
optimizing the geometry or to switch them on only in 
a later optimization step. These procedures will save 
a lot of computer time and we hope that it will still 
provide computational results with the required 
consistency. 

Although a very crude approximation, the solvent 
effect model we have presented here is a starting point 
in a series of solvent effect models we wish to develop 
for molecular mechanics. Molecular surface area is a 
very common quantity but it has proved to be difficult 
to compute analytically. Besides, developing analytical 
derivatives proved to be a very challenging task. The 
main advantage of the solvent effect method we have 
proposed here is its simplicity along with its close 
dependence on molecular geometry which will make 
it useful in conformational analysis. The need to 
include the solvation effect into an optimization 
scheme made us avoid to use any of the integrals (eqns 
(7,8)) which would have given a more accurate 
treatment of the solvent-solute van der Waals interaction 
but also will dramatically increase the computing time. 
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APPENDIX: SYMBOLS AND NOTATIONS 

a 
‘4 

A 

A 
b 

B 

C 

C 

CA 

d 

radius of a spherical cavity in solvent 
radius of atom i used in the evaluation of 
GPO, in GB method, appears in eqn. (1 1) 
label for sphere in the spheres arrangement 
of Fig 10 
Angstrom unit 
abbreviation of relation 17, appears in eqn. 
(15) 
label fur sphere in the spheres arrangement 
of Fig 10 
integration constant, appears in eqn. (4) 
label for sphere in the spheres arrangement 
of Fig 10 
piece of regular curve which borders the 
exposed surface area Si of atom i 
the distance between the centres of two 
overlapping spheres, appears in eqn. (25) 
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the distance between solute atom i and j ,  
appears in eqn. (1 1) 
total steric energy in solution 
steric energy due to creating a cavity in 
solvent 
solute steric energy in vapor phase 
steric energy due to solute-solvent 
electrostatic interaction 
steric energy due to solvent effect force field 
solvent effect steric energy of solute 
conformer i 
steric energy due to solute-solvent 
interaction by van der Waals forces 
abbreviation of relation 16, appears in eqn. 
(1 5 )  
the radial distribution function 
free energy due to creating a cavity in 
solvent 
polarization free energy due to solute dipole 
polarization free energy due to 
solute-solvent electrostatic interaction 
polarization free energy due to solute 
quadrupole 
solvation free energy 
free energy due to solute-solvent 
interaction by van der Waals forces 
polarization free energy due to 
solvent-solute dipole-dipole and 
dipole-quadrupole interactions 
abbreviation of relation 14, appears in eqn. 
(13) 
intersection circle made by overlapping 
spheres i and j 
Boltzmann constant 
geodesic curvature of C;. 
abbreviation of relation 2a/a3 
Length of the arc cut by atom k on i / j  
intersection circle 
the number of significantly populating 
conformers 
solute refractive index 
number of atoms in solute molecule 
Avogadro’s number 
free energy population of solute conformer 
i in solution 
the pressure of solute-solvent system 
partial charge of atom i 
axial quadrupole component of quadrupole 
moment 
perpendicular quadrupole component of 
quadrupole 
moment 
the distance between two interacting hard 
spheres 
van der Waals radius of atom i 

the radius i/j intersection circle 
polar coordinate, appears in eqn. (7) 
gas constant 
the length of the arc Ci, appears in eqn. (28) 
solute solvent accessible surface area 
solvent accessible surface area of atom i 
abbreviation of relation 25, appears in eqn. 
(24) 
absolute temperature 
Lennard-Jones potential 
the number of regular curves C A  which 
make a closed boundary 
cavity volume, the volume enclosed in the 
solvent accessible surface area 
the molar volume of the solvent 
the coordinate x of sphere A, see Fig 10 
the Cartesian coordinate x of the center of 
atom i 
the value of x A  at transition, see Fig 11 
the value which xA takes the next iteration 
after transition, see Fig 11 
reduced number density of the solvent, 
appears in eqn. (3) 
the Cartesian coordinate y of the centre of 
atom i 
the Cartesian coordinate z of the centre of 
atom i 
abbreviation of summation in eqn. (14), 
appears in eqn. (17) 

solute poiarizability 
isothermal compressibility 
Euler- Poincare characteristic, appears in 
eqn. (28) 
the increment in solute surface area 
the total differential of surface area 
the quadratic approximation of surface area 
the increment in coordinates 
solvent dielectric constant 
the angle between the line which connects 
the centres of spheres A and B and the line 
which connects the centres of spheres A 
and C, see Fig 10 
the value of (P at transition, see Fig 12 
the value which (P takes the next iteration 
after transition, see Fig 12 
macroscopic surface tension of the solvent 
switching parameter, appears in eqn. (27) 
polar coordinate, appears in eqn. (7) 
abbreviation for the relation (E  - 1)/(2~ + 1) 
index in eqn. (28) 
solute dipole moment 
empirically determined free energy 
parameters for solute-solvent interaction by 
van der Waals forces 
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polar coordinate, appears in eqn. (7) 
solvent number density, appears in eqn. (6)  
solute hard sphere diameter 
solute-solvent distance at u,, = 0, 
a. = (a + oS)/2 
the distance between solvent and atom i of 
the solute, oi = ri + oS/2 
solvent hard sphere diameter 
the angle which corresponds to the free 
arc, appears in eqn. (30) 
the angle which corresponds to the 
end-points of the arc cut out by sphere k 
on i/j intersection circle, appears in eqn. (3 1) 
this angle depends on the position of the 

01 

wP 

r, l o  

%,A + 1 

V 
A 

centre of atom k,  appears in eqn. (31) 

the angle which corresponds to the 
end-point's of the arc cut out by sphere 1 
on iljintersection circle, appears in eqn. (31) 
this angle depends on the position of the 
centre of atom I ,  appears in eqn. (31) 
the ratio between solute and solvent hard 
sphere diameters, appears in eqn. (3) 
empirical free energy parameters for cavity 
creation, appear in eqn. (5) 
external angle between the tangents drawn 
from intersection point of CA and CA+l 
regular curves 
gradient matrix 
hessian matrix 
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